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We investigate the behavior of small perturbations of steady state solutions of an arbitrary 
partial differential equation in two independent variables x and t near a critical point, i.e. 
near a point where one of the characteristic velocities becomes zero. We assume that all 
characteristics of the system are real and distinct except t = const, which may become mul- 
tiple in the case of a parabolically degenerate system. 

Critical points coincide with singular points of a system of equations describing steady-. 
state solutions. Possible types of these points were investigated, and we found that in the 
vicinity of each of these points integral curves lie on a plane passing through that point. 

We show that unsteady processes can be described near critical points by a single first 
order partial differential equation whose coefficients can be determined from the eigenval- 
ues of the singular point of the steady-state equations. Unsteady processes are investigated 
with nonlinear terms which materially influence the form and amplitude of perturbations ta- 
ken into account. 

A first order equation describing behavior of perturbations near the critical point was ob- 
tained for gasdynamic equations and investigated in [I]. S imi ar methods were also elabora- 1 
ted in works on asymptotic laws of pro agation of weak shock waves in gasdynsmics 12 to 
41 and magnetohydrodynamics [5 and 6 P . 

Another method based on construction of a Green’s function was used successfully by 
S.V. Iordanskii in his Candidate dissertation entitled “On the stability of some self-similar 
gasdynamic solutions”, defended at the Applied Mathematics Institute, Moscow, 1958. He 
investigated the stability of self-similar unsteady solutions near a point moving with a vel- 
ocity, which coincided with the characteristic velocity when the self-similar variable was 
kept constant. 

Results.obtained in the present paper can be used in investigating the stability of vari- 
ous gasdynamic flows in channels (flows with friction, heat exchange, chemical reactions 
etc.); magnetohydrodynamic flows and in plasma problems. 

Generalization of this theory to the case of parabolically degenerate systems makes it 
possible to consider cases in media with dissipative processes such as thermal conductiv- 
ity or limiting conductivity in magnetohydrodynamics. 

We have considered as examples quasi-onedimensional magnetohydrodynamic flows with 
E and H given, and onedimensional gas flows with finite conductivity in channels of varia- 
ble cross-section in the presence of a rectilinear magnetic field transverse to velocities. 

Consider the following system of Eqs. 

Atj(Un* z)s+ Bij(Uk, z)z+ ci(uk, z)= 0 (i, i=1, 2,...,n) (1) 

Here and in the following repeated subscripts will denote summation. 

by 

Characteristic velocities c, i.e. velocities of propagation of weak shock waves, are given 

IBrj (“kv Z) - CA,i (Uky 5) 1 = 0 (21 

We assume that all roots ck of this equation are real and distinct over some domain of 
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variables z and uk. We shall also assume that in this region matrix A,,(uk, zl is of constant 
rank m \< n. System (11 can be hyperbolic or parabolically degenerate as in systems descri- 
bing dissipative processes. 

We shall select a domain of variables x and uk, in which one of the characteristic velo- 
cities e.g. c ‘(x, uk) becomes zero. The rank of the matrix B,, will, on the surface ct (x, uk) 
= 0, be equal to n - 1, while in the remainder of the region matrix B,, will be nondegener- 
ate. A continuous steady-state solution of (11 with c 1 going through zero may exist only if 
the quantity C, /?, (where p, are given by 4, /$ = 01 becomes zero simultaneously with cl. 

If condition C,fi = 
h 

0 is not fulfilled, then all derivatives become infinite on the surface 
C ’ = 0 and change t eir sign on passing through this surface. Consequently, no solution 

exists which is continuous and single-valued in X. It is easily seen that points at which 
the relations 

cl =o t cg, =o 
hold simultaneously, are the singular points of equations of steady-state solutions. A set 
of these points forms a (a - I)-dimensional surface in the (x, u l,..., u,l-space. 

Let us consider a steady-state solution uko(xl of (11, in which c 1 changes its sign at 
some point. We shall assume that x is measured from this point. Behavior of perturbations 
t+(z. I)= uk(x, t) - uko(xl of this solution is described by the following system of Eqs. 

(3) 

where A,,, E,, and F, depend on x and uk, and F, = 0 when vk= 0. 

We shall assume u sufficiently small and consider solutions of (31 on a certain segment 
[- 6, 81. Let us intro&e a new variable x 1 = r/6. Then (31 will become 

Aij~ + (4) 

We next assume that 8 is small and seek a solution in the form of a series 

Vj = Vj” + dVjl + e e e 

Expanding the coefficients of (41 into series in uk and x in the zero approximation, we 
obtain 

~,j"aq 1 ad = 0 (51 

o where B,, is the value of B,, when uk = 0, x = 0. Solution of (51 has the form 

Uj' = W (5’, t)mbj” + gj (0 (61 
where b,” are given by 

Bi,“b,” = 0, 
while t&x’, t) and g,(t) are arbitrary functions. Solution (61 makes it possible to replace uk 

with new variables w, We,..., tu which are such linear combinations of uk that in the neigh- 
borhood of the critical point onfy’w varies significantly with z, while wZ, . . . . wn can be as- 
sumed, in this neighborhood, to be the fqnctions of time only. We shall see later that w rep- 
resents a Riemannian invariant corresponding to characteristic velocity ct. 

Quantities g,(l) in (61 are linear combinations of wZ(tl, . . . . w,(t). 

This means, in the case of steady-state solutions, that in the neighborhood of each sin- 
gular point integral curves lie on two-dimensional planes defined by Eqs. wz = const, . . . . 
w, = const. 

The condition of consistency of the system of first approximation equations yields the 
following Expression for wfz’, tl: 

B,i”$ = - ( A,,” $ + $ AB,j -f$ + F,$;) G Pi 

ABii = Bij (5’3 Vk) - Bij” 
where A ’ is the value of A 
calcula:id at z = 0 and uk = '6. . 

when% = 0, uk = 0 and F,vko are partial derivatives in uk of F, 
We should note that when F, is expanded into a series, terms 

containing u in zero degree are absent. 
Since B,,’ is degenerate, consistency of (71 demands that pl pr=O where pro are constant 

magnitudes satisfying 
&;OPF = 0 
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(8) 

The latter with (6) taken into account, can be written as 

Ai TPtb,,’ 2 + +- ABijp:bjo $$ + FiQ;bkow + 

+ AijOPc ?$ + bJ%‘g,t (0 = 0 
and it can be shown that 

holds up to the first order terms. Indeed, c t is determined from the condition of existence 
of p, satisfying the system of algebraic linear Eqs. c %4,, fi, = B,,& where c 1 = 0 when 
Vk = x = 0. Addition of arbitrarily small increments to vk and x and contraction of the ob- 
tained system with the vector bjo, yields the required equation 

Dividing (8) by A,F/3pbp and expanding c t in W, We,..., w, and X, we obtain 

$+r cxlz + c,lw + cp (t)I g = Kw + f (t) (9) 
Functions Cp (t) and f(t) are given by 

CP (t) = Biiu”,g, (t) PiObjO / A,j”B,“bj 

f (t) = - ( AiTpt 3 + FioiPcgk (t)) / Aii’PFbj’ 

and represent linear combinations of wZ,..., w, an 
cWt and K are constants. 

d their time derivatives. Coefficients c, ‘, 

Magnitudes w&t),..., wn (t) in terms of which we expressed V(t) and f(t), can be obtain- 
ed from a solution of the problem falling outside the small neighborhood of the coordinate 
origin. In many cases we can assume ‘P(L) and f(t) to be equal to zero. Otherwise they can 
be made equal to zero by the following change of variables: 

WI = w - w* (t), F, = r - x* (t) 
where w*(t) and #(t) are particular solutions of 

dW* 
_ = KW’ + f (t), 
dt 

d”* = cxlx* + c,‘w* + q (t) 
dt 

In the followin 
8 

we shall assume that V(L) and f(t) are equal to zero. 
Coefficients c, , c,1 and K in (9) depend on a choice of steady-state solution ulo(n) 

investigated for stability. To remove this dependence we shall replace w with a new un- 
known c I c 1 = cxl x + cW1w. Then (9) will become 

i3c / at + c&z / dx = ac -t px 
where a and 0 are constants (a = K + cxl, ,/!? = - Kc, ‘). Solution of (IO) can be obtained by 
integrating the following Eqs. of characteristics: 

dc I dt = UC + fix, dx I dt = c (11) 

ft should be noted that in one-dimensional problems of gas dynamics and magnetohydro- 
dynamics with low magnetic Reynold’e numbers, c = u - a &a 

! 
(,+f - 1) where M = u/o and 

oo is the velocity of sound at the critical point of the unpertur ed flow. 
Change of variables shown above cannot be performed if c,l= 0 or if the term c ,4u&u/ 

dx in (8) is neglected as nonlinear. To obtain a solution in this case, we must use the ini- 
tial Eq. (9) together with the corresponding Eqs. of characteristics 

dw I dt = Kw; dx I dt = cX1x (12) 
Equation (IO) describes botb stationary and nonstationary solutions near a critical point. 

In the stationary case system (1) gives a solution c(x) of Eq. (10) in the form c = c(t), I = 
= x (t). 

The condition that a characteristic Eq. of (11) defining the eigenvalues 

h2-aah--_ =O (13) 
has real roots h t and A , is necessary for continuous solutions of (ll), passing through the 
critical point, to exist. &e shall assume for definiteness, that h > h 

Behavior of integral curves on the plane x, c for various real’valu& of X t and A,, is 
shown on Figs. 1 to 3 where arrows indicate the direction of increasing r. 

Characteristic directions corresponding to A t and X 2 are given at the singular point by 
Eqs.c=+xndc=X.+ 
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Fig. 1 Fig. 2 

Any steady-state solution c,(x) consisting of segments of integral curves singlevalued 
in x and passing through a singular point, can be taken as an unperturbed solution. 

Consider, on the xc-plane, an arbitrary part of an area S bounded by a closed curve whose 
points move in accordance with (11). 

L 
t 

c Since the velocity field given by the right-band sides of 
(11) has a constant divergence 

a dc --= 
ac dt + = 

Fig. 3 

it follows that S= So eQt where So is the 
surface at t = 0. 

The area f8cd.x of an arbitrary pertur 
bation 6c = c(x, t) - co&) bounded in 
space where 6c is measured from any inte- 
gral curve of the system (11) selected as 
au unperturbed solution (Fig. 41, changes 
in a similar manner. If the perturbation 6c 
is not wholly concentrated on some arbi- 
trarily chosen segment [z xz], then, when 
we consider the change o area [8c& on t’ 
this segment, we must take into account 
the flux of area through the lines x = x1 

and%= x2 so that 

X” 

gkd3. = @S 6cds$ 
c(~3+~c(x*) 

5 
c(x*)+Sc(xr) 

cdc- s cdc (14) 
. 

cw c(s) 
Let us consider&L unsteady zklution and two closely spaced points whose r-coordinates 

differ by Ax and values of c by AC (Fig. 4). Since (11) is a linear system, Ax and AC also 
satisfy it. From (11) and Figs. 1 to 3 it follows that, if the initial value of the ratio AC/AX 
> A ?, then it tends with time to a limit value x t which represents a tangent of the angle of 
inchnation of the eigsnvector. 

Derivative dc/dx tends to a limit as exp[ - (h t - h 2 It] and the characteristic of an un- 
perturbed solution passing through a singular point tends to the critical point as expXz: 
whenhp<O<A ,orasexpAtrwbet~X~<X <O. 

From this it 0110~s that the approach of a rmit slope by the derivative is faster than the r’ 1. 
approach of tbe critical point by an unperturbed characteristic when X 1 < 0 < hi and slower 
wbenX*<~l<O. 

If Aclhx <X2, then it becomes infinite in a finite period of time, the continuous aolu- 
tion ceases to exist and a solution with discontinuities must be considered. Thus a pertur- 
bation of finite duration in x, tends to assume a saw-tooth or square waveform. 

We know [7] that, in the case of weak shock waves, increments of all magnitudes coin- 
cide, with accuracy of up to second degree, with increments of magnitudes in a correspon- 
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ding simple wave. Thus, the presence of a wesh shock wave will sot lead to ths aPPe-=ce 
of perturbations of remaining variables wUt..., ~a behfnd ft. 

Velocity of the shock wave is equal, 
within the ssme accuracy, to half of the 

8 sum of characteristic velocities calcula- 
ted from the conditions in front atrd behind 
the shock wave. From this it follows that 
the presence of a weah shoch wave does 
not lead to farther change in value of the 
integral f8cdr with timaLas compared with 
a continuous case, and Eq. (14) still holds. 

Although on1 hyperbolic systems were 
investigated in r 71, the results obtained 
are valid for more general systems since 

Fig. 4 

the only criterion used in the proof is that 
f the characteristic corresponding to the 

shock wave is not multiple. 
Let as investigate the behavior of sol- 

dons of (10) at various combinations of 
signsofA andAX. 

Growth of perturbations 6c = cfx, t) - 
- co&) with time means that the steady- 
state solution aLaGE) is unstable; on the 

other hand, the decay of 8c does not imply stability of u,,(z) on a finite segment of the x- 
axis, since the cause of instability need not be connected with the behavior of the soh~tion 
near the critical point. Nevertheless we shall assume in the last case, for brevity, that the 
solution is stable. 

1. When h, > h p > 0, we have a singularfty in the form of a node with positive charac- 
teristic directions. The behavior of integral curves of (11) is given for this singularity, on 
Fig. 1. From (11) and Fig. 1 we see that any continuous perturbation different from zero at 
the point x = 0 when 8 = 0, grows with time without bounds near this point. The leading and 
trailing front of such a perturbation will move away from the critical point. If one of these 
fronts reprosants a shock wave, then the velocity of its departure from the critical point in- 
creases with the increasing intensity of the shock wave. 

Thus, any steady-state solution passing through a critical point of the type considered 
above is unstable. Growth of perturbations leads to establishment of a new steady-state sol- 
ution in which the sign of E does not change and is the same as the sign of initial perturba- 
tion atr=O. 

2. Wheu h 2< x < 0, we have a singularity in the form of a node with negative charactet- 
istic directions f & lg.2). In the presence of such a singularity, the area and amplitude of any 
perturbation bounded in space tends to zero, while the leading and trailing fronts move to- 
wards the critical point. 

If a constsnt value of the perturbation is msintained on the boundary of the considered 
region, then, as t + 00, a new steady-state solution satisfying this boundary condition will 
be established. If a new boundary value of e, given at the point r = zt satisfies the inequal- 
ity hzxr < cfxt) < 0, then we have a continuous solution passing through the singalarfty. 

When &t) < Xy,, we have a solution with a shock wave near the coordinate origin. 

3. The singularity A, < 0 <h, is a saddle point (Figs. 3 and 4). Four types of steady- 
state solutions passing through the singularity are poaaible; they are represented on Fig. 3 
by integral curves oob, iof, aof and lob. 

Conaidsr the perturbation of soti. Magnitude 6c tends to zero as exp h,t. The leading and 
trailing fronts of the perturbation move away from the critical point. Perturbation of oob is 
shown on Fig. 3 for two consecutive instants of time I and 2, with a dot-dash line. 

Perturbations of solution lof converge to the critical point. After a sufficiently long time, 
sny perturbation bounded in space assumes a triangular form, one side of which lies on the 
line lof, the second iu parallel to cwb while the third is parallel to the ordinate and represents 
s ahoch wave. The side parallel to the line oob tends with time to this line. The srea of per- 
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turbation increases when a > 0 and decreases when a < 0. 
In the last case any perturbations bounded in space tend to zero, and their leading and 

trailing fronts move towards the critical point. Fig. 3 shows the form of a positive and nega- 
tive perturbation of the solution Lof for consecutive instances of time tt < tl < Lg... and for 

a < 0 with a broken line. 
If a > 0, then the development of initial perturbation leads to a rearrangement of the 

steady-state solution lof. Perturbations with positive 6~ lead to the formation of a shock 
wave moving to the right and away from the critical point. In this case the solution lob is 
established behind the shock wave. Perturbations with negative SC lead to the solution oaf. 
If the initial perturbation contains 6c in both signs, then we have solution sob. Fig. 4 
shows, by means of a broken line, the form of a positive perturbation of the solution lof 

when a > 0, for times t t < t2 < tj... 

c 
eginning from some instant of time, a constant value of 

c is maintained on the boundary of the region in question, then 
when a < 0 a steady-state solution containing a shock wave will 
be established in time; the distance of the shock wave from the 

critical point will be directly proportional 
to the boundary value of 6~. Fig. 5 shows 

8 the perturbations when 6c is positive on 
the boundary, for consecutive times tt, t, 

rturbations of the solution lob with 

a 

positive 6c decay in the same manner as 
positive perturbations of the solution sob. 
Perturbations with negative 6c grow like 
the negative perturbations of lof. When a > 
> 0, this leads to solution oob. 

Perturbations of solution aof with nega- 
tive 6c decay like negative perturbations 
of solution aob, while perturbations with 
positive SC grow like positive perturbations 
of solution lof; when a > 0, this leads to 
solution oob. 

Consequently, solution oob is always stable in the sense we have considered, while sol- 

utions lof, lob and aof are stable when a < 0 and unstable when a > 0. 
Thus stability of a solution near the critical point depends on the character of the sin- 

gularity of steady-state solutions at this point and is defined by signs of the coefficients 
a and p of Eq. (13).. 

When a < 0, then any solution is stable near the critical point. When a > 0 all steady- 
state solutions in which c(x) becomes zero are unstable, with the exception of the solution 
represented by an integral curve passing through a saddle point singularity with dc/rfx posi- 
tive. 

It should be noted that if behavior of perturbations in (8) is studied when only terms 
linear in ru are retained, then according to (12) these perturbations will decay when K < 0 
and grow without bounds when K > 0. When nonlinearity is taken into account, perturbations 
may decay even when K > 0, provided that c, < 0 and a 3 K + cx < 0. The variation in area 
of a perturbation bounded in x is given in both linear and nonlinear approximation by the 
same Eq. S=S expat. 

Different be E avior of perturbation amplitudes in the linear and nonlinear approximation 
is due to the fact that in the nonlinear approximation perturbation tends to assume a trian- 
gular form and decrease in the perturbation area is accompanied by the decrease of ampli- 
tude. On the other hand, in a linear case the perturbation amplitude may tend to infinity even 
if its area tends to zero. 

Some examples of transonic flows are given below. 
Equations connecting the motion and energy of a quasi-one-dimensional flow of electric 

conducting gas at low values of ma 

$ 

etic Reynold’s number (stability of these flows in a 
linear approximation was studied in 91) have the form [8] 

,prts = ?)I, puu’ + p’ + OB (uB - E) = 0 
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L ( us -Lp+p”2 
,x - 1 2 11 ‘-f-aEs(uB-E)=O (15) 

Here s is the cross-section area of the channel, u is the velocity along the r-axis, p is 
density, p is pressure, m is consumption of gas, x is the ratio of specific heata, E is the 
electric and B the magnetic field intensity, o is electric conductivity of the medium and a 
prime denotes differentiation with respect to 2. 

Magnitudes s, E and E are given functions of x. Vectors B and E are at right angles to 
each other aud lie in a plane orthogonal to the r-axis. E is normal to the conducting walls 
and B is normal to the insulating walls of the channel. 

Eqs. (15) were obtained under the assumption that the gas is perfect, nonviscous and 
not thermal conducting. It follows from [lo] that Eqs. (15) cau exhibit singularities of all 
types discussed previously and their appearance depends on the choice of values of the 
magnitudes defining the flow. 

Values of derivatives M’(M = u/a is the Mach number) calculated along characteristic 
directions at the singularity, are found from 

M’s-aM’-@z~, a=+% u&-X& 
t x. )i 

uB- “E 
x+f ) 

(16) 

Magnitude fl is given in terms of B, B: E, E: s, s 2 s’: 31 and (r (see Formula (2.6) of 
[ 101 where the conductivity o was assumed constant). When u < 0, flows are stable at the 
transonic points for any type of singularity. 

From (16) it follows that a is negative if one of the following conditions holds: 

uB> -?.__ E, 
x+i 

l@<_ > x-i F 

When electrical energy is removed from the system, we iways have a < 0, since under 
these conditions the inequality uB - E > 0 always holds. 

Now we shall consider one-dimensional magnetohydrodynamic flows in a channel of vari- 
able cross-section with finite values of magnetic Reynold’s numbers, Eqs. describing such 
flows have the form 

pus = m, puu’ + p’ + B@ = 0, up~+xpu~+-xpus~~s-(~-~~v,e~L-~ 

dl? + B’u + ~3s’ f s - v&Y == 0, 3’ - 8 = 0 (17) 

where vn, is magnetic viscosity which in the folfowing will be assumed constant, while re- 
maining symbols are identical with those appearing in (15). In the derivation of (17) magne- 
tic lines of force were assumed to be parallel straight lines normal to the velocity vector. 

Behavior of perturbations in the linear approximation was studied for such flows but 
without sonic transition, in f 111 Paper 1121 dealt with the formation of shock waves when 
perturbations were propagated along magnetohydrodynamic flows without the assumption of 
rectilinearity of magnetic lines of force, but with vrn = 0 (using adiamatic and stabilisation 
equations of the magnetic field). 

Let us solve Eqs. (171 for derivatives. Replacing one of the variables, say p, with the 
Mach number M, we obtain 

M’=: 2 /ya)r$8[sB +~+(2+xMr)v,#]-; P+(x-WI) 

I I( u = _(2$+$3* &J’=--(pw’+- Be) 
i+xMz 

(~=~~) (18) 

tLL!_ 
%I i 

u’B + 24% + uBs’ 
s ! 

, B’z=e 

Conditions d[uB + (x - 1) v,,,B] = x psr’/s and M = 1 hold at the singularity. By (18) 
increments in u, p,’ 8 and B can be expressed near the singularity in terms of increments of 
M and s. while M calculated along the characteristic directions are given by 

From (19) we see that any type of singularity can be obtained by appropriate choice of 
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the form t of the channel and of 8 near this singularity. If the discriminant of (19) is posi- 

tive, i.e. if A = a l/4 + ,!I> 0, then continuous solutions exist, which pass through a singu- 

larity. 

1) When @ > 0, the singularity is a saddle point; when a < 0, both solutions passing 
through the singularity are stable; when a > 0, the solution which has M’< 0 (solution rof 
on Fig. 3) is unstable; 

2) when fl< 0 and a < 0, then the singularity is a node with negative characteristic di- 
rections and all solutions passing through it are stable; 

3) when p < 0 and a > 0, the singularity is a node with positive characteristic directions 
and all solutions passing throngh it are unstable. 

We can easily see from (19) that a < 0 when one of the following conditions holds: 

uB < - 3&e, UB > - (x - l)Y,8 

When A < 0, the singularity is a focus and no continuous solutions passing through this 
singularity exist. 
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